Copied to
clipboard

G = C523C16order 400 = 24·52

2nd semidirect product of C52 and C16 acting via C16/C4=C4

metabelian, supersoluble, monomial, A-group

Aliases: C523C16, C20.13F5, C20.2Dic5, C53(C5⋊C16), C5⋊(C52C16), C10.5(C5⋊C8), C10.(C52C8), (C5×C20).6C4, (C5×C10).3C8, C52C8.2D5, C2.(C523C8), C4.2(D5.D5), (C5×C52C8).3C2, SmallGroup(400,57)

Series: Derived Chief Lower central Upper central

C1C52 — C523C16
C1C5C52C5×C10C5×C20C5×C52C8 — C523C16
C52 — C523C16
C1C4

Generators and relations for C523C16
 G = < a,b,c | a5=b5=c16=1, ab=ba, cac-1=a-1, cbc-1=b2 >

4C5
4C10
5C8
4C20
25C16
5C40
5C5⋊C16
5C52C16

Smallest permutation representation of C523C16
On 80 points
Generators in S80
(1 80 29 44 58)(2 59 45 30 65)(3 66 31 46 60)(4 61 47 32 67)(5 68 17 48 62)(6 63 33 18 69)(7 70 19 34 64)(8 49 35 20 71)(9 72 21 36 50)(10 51 37 22 73)(11 74 23 38 52)(12 53 39 24 75)(13 76 25 40 54)(14 55 41 26 77)(15 78 27 42 56)(16 57 43 28 79)
(1 58 44 29 80)(2 45 65 59 30)(3 66 31 46 60)(4 32 61 67 47)(5 62 48 17 68)(6 33 69 63 18)(7 70 19 34 64)(8 20 49 71 35)(9 50 36 21 72)(10 37 73 51 22)(11 74 23 38 52)(12 24 53 75 39)(13 54 40 25 76)(14 41 77 55 26)(15 78 27 42 56)(16 28 57 79 43)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,80,29,44,58)(2,59,45,30,65)(3,66,31,46,60)(4,61,47,32,67)(5,68,17,48,62)(6,63,33,18,69)(7,70,19,34,64)(8,49,35,20,71)(9,72,21,36,50)(10,51,37,22,73)(11,74,23,38,52)(12,53,39,24,75)(13,76,25,40,54)(14,55,41,26,77)(15,78,27,42,56)(16,57,43,28,79), (1,58,44,29,80)(2,45,65,59,30)(3,66,31,46,60)(4,32,61,67,47)(5,62,48,17,68)(6,33,69,63,18)(7,70,19,34,64)(8,20,49,71,35)(9,50,36,21,72)(10,37,73,51,22)(11,74,23,38,52)(12,24,53,75,39)(13,54,40,25,76)(14,41,77,55,26)(15,78,27,42,56)(16,28,57,79,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;

G:=Group( (1,80,29,44,58)(2,59,45,30,65)(3,66,31,46,60)(4,61,47,32,67)(5,68,17,48,62)(6,63,33,18,69)(7,70,19,34,64)(8,49,35,20,71)(9,72,21,36,50)(10,51,37,22,73)(11,74,23,38,52)(12,53,39,24,75)(13,76,25,40,54)(14,55,41,26,77)(15,78,27,42,56)(16,57,43,28,79), (1,58,44,29,80)(2,45,65,59,30)(3,66,31,46,60)(4,32,61,67,47)(5,62,48,17,68)(6,33,69,63,18)(7,70,19,34,64)(8,20,49,71,35)(9,50,36,21,72)(10,37,73,51,22)(11,74,23,38,52)(12,24,53,75,39)(13,54,40,25,76)(14,41,77,55,26)(15,78,27,42,56)(16,28,57,79,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,80,29,44,58),(2,59,45,30,65),(3,66,31,46,60),(4,61,47,32,67),(5,68,17,48,62),(6,63,33,18,69),(7,70,19,34,64),(8,49,35,20,71),(9,72,21,36,50),(10,51,37,22,73),(11,74,23,38,52),(12,53,39,24,75),(13,76,25,40,54),(14,55,41,26,77),(15,78,27,42,56),(16,57,43,28,79)], [(1,58,44,29,80),(2,45,65,59,30),(3,66,31,46,60),(4,32,61,67,47),(5,62,48,17,68),(6,33,69,63,18),(7,70,19,34,64),(8,20,49,71,35),(9,50,36,21,72),(10,37,73,51,22),(11,74,23,38,52),(12,24,53,75,39),(13,54,40,25,76),(14,41,77,55,26),(15,78,27,42,56),(16,28,57,79,43)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])

52 conjugacy classes

class 1  2 4A4B5A5B5C···5G8A8B8C8D10A10B10C···10G16A···16H20A20B20C20D20E···20N40A···40H
order1244555···58888101010···1016···162020202020···2040···40
size1111224···45555224···425···2522224···410···10

52 irreducible representations

dim111112222444444
type+++-+-
imageC1C2C4C8C16D5Dic5C52C8C52C16F5C5⋊C8C5⋊C16D5.D5C523C8C523C16
kernelC523C16C5×C52C8C5×C20C5×C10C52C52C8C20C10C5C20C10C5C4C2C1
# reps112482248112448

Matrix representation of C523C16 in GL4(𝔽241) generated by

91000
09100
1040980
1370098
,
98000
929100
1120870
23500205
,
640970
0011
011770
1050640
G:=sub<GL(4,GF(241))| [91,0,104,137,0,91,0,0,0,0,98,0,0,0,0,98],[98,92,112,235,0,91,0,0,0,0,87,0,0,0,0,205],[64,0,0,105,0,0,1,0,97,1,177,64,0,1,0,0] >;

C523C16 in GAP, Magma, Sage, TeX

C_5^2\rtimes_3C_{16}
% in TeX

G:=Group("C5^2:3C16");
// GroupNames label

G:=SmallGroup(400,57);
// by ID

G=gap.SmallGroup(400,57);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,12,31,50,1924,8645,5771]);
// Polycyclic

G:=Group<a,b,c|a^5=b^5=c^16=1,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^2>;
// generators/relations

Export

Subgroup lattice of C523C16 in TeX

׿
×
𝔽